Megger Testing Procedure for Different Types of Equipment Including Cables

This comprehensive document provides detailed procedures for conducting megger testing (insulation resistance testing) on various electrical equipment, with special emphasis on cables and other critical electrical assets.

Executive Summary

Megger testing, also known as insulation resistance testing, is a critical preventive maintenance procedure used to assess the integrity of electrical insulation in power systems. The test applies a high DC voltage to electrical equipment and measures the resulting leakage current to determine insulation resistance, typically expressed in megohms (M Ω) or gigohms (G Ω) [1] [2]. This non-destructive testing method helps identify insulation degradation, moisture ingress, contamination, and other potential failures before they lead to catastrophic equipment breakdowns or safety hazards [1] [2]

Regular megger testing is essential for maintaining electrical safety, ensuring equipment reliability, and complying with industry standards such as IEEE 43, IEC 60364-6, and NFPA 70 [4] [5] [6]. The procedure is applicable to a wide range of equipment including cables, transformers, motors, generators, switchgear, circuit breakers, busbars, and control panels.

Introduction to Megger Testing

What is a Megger Test?

A megger test is an electrical diagnostic procedure that measures insulation resistance by applying a controlled high-voltage DC signal (typically ranging from 250V to 15kV) between conductors or between a conductor and ground $^{[1]}$ $^{[2]}$. The instrument, commonly called a "megger" or "megohmmeter," measures the minute leakage current flowing through the insulation and calculates the resistance using Ohm's Law $^{[1]}$ $^{[2]}$.

The test is named after the Megger brand, which pioneered insulation testing instruments in the early 20th century. Today, "megger" has become a generic term for any insulation resistance tester [8].

Working Principle

The megger test operates on the fundamental principle of Ohm's Law (R = V/I) $^{[1]}$ $^{[9]}$. The instrument generates a precise DC voltage and applies it across the insulation being tested. As the voltage stresses the insulation, a small leakage current flows through and over the surface of the insulating material. The megger measures this current and calculates the insulation resistance $^{[1]}$ $^{[2]}$ $^{[10]}$.

Key Components of a Megger:

- **DC Generator:** Either hand-cranked or motorized (battery/line-powered) to produce the test voltage [1] [7]
- **Deflecting Coil (Current Coil):** Connected in series to measure current flowing through the circuit under test [1] [2]
- Control Coil (Pressure Coil): Connected across the circuit to measure voltage [1] [2]
- **Current Limiting Resistors:** Protect the instrument from damage in case of very low external resistance [2]
- Test Terminals: Line (L), Earth (E), and Guard (G) terminals for proper connections [1] [10]
- **Display:** Analog pointer or digital screen showing resistance values [1] [7]

Higher insulation resistance values indicate more effective insulation. When electrical insulation is in good condition, the current flow is minimal and the megger pointer moves toward infinity (∞). Conversely, if there is a short circuit or severe insulation breakdown, the pointer indicates zero or near-zero resistance [$\frac{1}{2}$].

Importance of Insulation Resistance Testing

Insulation resistance testing serves multiple critical functions in electrical system maintenance:

- **1. Safety Protection:** Detects insulation degradation that could lead to electric shock, arc flash incidents, or electrocution hazards $^{[2]}$ $^{[4]}$ $^{[11]}$.
- **2. Equipment Reliability:** Identifies potential failures before they occur, preventing unexpected downtime and costly repairs [2] [3] [11].
- **3. Preventive Maintenance:** Enables trending analysis to track insulation condition over time and schedule maintenance proactively $^{[2]}$ $^{[3]}$ $^{[12]}$.
- **4. Compliance:** Ensures adherence to electrical codes and safety standards such as IEEE 43, IEC 60364-6, NFPA 70, and OSHA requirements [4] [13] [6].
- **5. Quality Assurance:** Verifies proper installation of new equipment and validates insulation integrity after repairs [2] [3] [13].
- **6. Cost Reduction:** Extends equipment lifespan by identifying issues early, reducing emergency repairs and replacement costs ^[2].

Studies indicate that nearly 80% of electrical testing and troubleshooting tasks involve some form of insulation resistance measurement, underscoring its fundamental role in electrical maintenance programs [11].

Types of Insulation Deterioration Detected

Megger testing effectively identifies various forms of insulation degradation:

- Moisture Ingress: Water penetration significantly reduces insulation resistance [2] [14] [4]
- Thermal Degradation: Excessive heat causes insulation material breakdown [4] [11]
- Mechanical Stress: Vibration, bending, or physical damage to insulation [4] [11]

- Chemical Contamination: Exposure to oils, solvents, or corrosive substances [4] [11]
- **Electrical Stress:** Voltage surges and sustained overvoltage conditions [4] [11]
- Aging and Oxidation: Natural deterioration of insulating materials over time [4] [11]
- Dirt and Dust Accumulation: Surface contamination creating leakage paths [2] [12]

Types of Megger Instruments

Megger instruments are available in various configurations to suit different testing requirements, voltage levels, and application environments [7].

Hand-Cranked (Analog) Meggers

These traditional instruments feature a hand-operated crank that drives an internal generator to produce the test voltage [1] [7] [2]. The operator rotates the handle at approximately 120-160 rpm to generate a consistent voltage output [15] [10].

Advantages:

- uru.com • No external power source required, ideal for remote locations [7]
- Simple, robust construction with long service life [7]
- Lower cost compared to digital models [7]

Disadvantages:

- Requires physical effort to operate [7]
- Less precise than digital instruments [7]
- Difficult to maintain constant voltage during testing [2]
- Limited to lower voltage outputs (typically 250V, 500V, 1000V) [1] [7]

Typical Applications: Field testing in remote areas, basic cable testing, routine maintenance in facilities without power access [7].

Digital/Electronic Meggers

Modern digital insulation testers use battery or line power to generate test voltages and provide digital readouts with enhanced features [1] [7].

Advantages:

- Precise, stable voltage output [7] [16]
- Digital display with high resolution (0.01 M Ω) [16]
- Multiple test voltage options (250V to 15kV) [7] [16]
- Advanced diagnostic features (PI, DAR, step voltage, dielectric discharge) [16] [3]
- Data logging and storage capabilities [7] [16]
- Automatic calculations and trending analysis [7] [16]

Disadvantages:

- Requires batteries or external power [7]
- Higher cost than analog models [7]
- More complex operation requiring proper training [7]

Typical Applications: Comprehensive testing programs, high-voltage equipment testing, data recording for maintenance records, advanced diagnostics [7] [16].

Motorized Meggers

High-capacity motorized units designed for testing large rotating machinery such as generators and high-voltage motors $^{[7]}$.

Features:

- Automated testing procedures [7]
- High-voltage capabilities (up to 15kV or higher) [7] [16]
- Suitable for heavy electrical machinery testing [7]
- Often include advanced features like automated PI and DAR calculations [16]

Specialized Meggers

High-Voltage Megohmmeters: Designed for testing insulation in power transformers, high-voltage transmission lines, and substations with voltage outputs exceeding 10kV ^[7] [16].

Combination Devices: Instruments combining insulation resistance testing with earth/ground resistance measurement capabilities, useful for comprehensive system testing $^{[Z]}$.

Multifunction Testers: Devices that perform multiple tests including insulation resistance, continuity, earth loop impedance, RCD testing, and voltage measurement [17] [18].

General Safety Precautions for Megger Testing

Safety is paramount when conducting megger tests due to the high voltages involved. Strict adherence to safety procedures protects both personnel and equipment [2] [3] [19] [20].

Before Testing

1. De-energize the Equipment:

- Completely isolate the equipment from all power sources [2] [3] [14] [19]
- Open all circuit breakers and disconnect switches [2] [14]
- Verify zero voltage using a calibrated voltage tester [2] [14]
- Apply lockout/tagout (LOTO) procedures with proper tags and locks [15] [2] [14]

2. Discharge Stored Energy:

- Discharge all capacitance through a suitable grounding resistor [2] [14] [9]
- Wait for discharge current to reach zero [6]
- Verify no residual voltage (less than 20V) before proceeding [6]
- Ground the equipment temporarily during discharge [15] [14]

3. Disconnect Equipment:

- Disconnect the equipment under test from connected circuits and devices [2] [3] [19]
- Remove or isolate sensitive electronic components, control circuits, capacitors, surge arresters, and pilot lamps [3] [14] [21]
- Disconnect lightning arresters and surge protection devices [9] [21]
- Disconnect instruments, meters, and other connected apparatus [2] [14]

4. Personal Protective Equipment (PPE):

- Wear insulated gloves rated for the test voltage [2] [20]
- Use safety glasses or face shields [2] [20]
- Wear arc-rated clothing if required [20]
- Use insulated footwear [20]

5. Environmental Conditions:

• Ensure winding temperature is above the dew point (minimum 5°C above) before testing [22] [6]

com

- Avoid testing in wet or extremely humid conditions [14] [20]
- Record ambient temperature for correction factors [14] [21] [6]
- Clean all bushings and terminals to prevent surface leakage [9] [21]

6. Test Equipment Verification:

- Verify megger calibration is current (typically annual calibration required) [13]
- Test the megger before use: should read infinity (∞) when not connected and zero (0) when terminals are shorted [15] [10]
- Inspect test leads for damage, cracks, or deterioration [14] [20]
- Ensure test leads are rated for the test voltage being used [23]

During Testing

1. Never Touch Test Leads:

- **NEVER** touch test leads while voltage is being applied [2] [3] [19] [20]
- High voltage can cause severe shock or electrocution [19] [20]
- Maintain safe distance from energized connections [20]

2. Warning Signs and Barriers:

Post warning signs to prevent unauthorized access [15] [14]

- Establish barriers around the test area [14] [20]
- Ensure only qualified personnel are present [20]
- Work in pairs when possible for safety [20]

3. Proper Lead Connection:

- Ensure all connections are secure and properly insulated [14] [20]
- Avoid loose or faulty connections which can cause arcing [20]
- Use appropriate connection points as specified in procedures [1] [14]

4. Test Duration:

- Allow adequate test time for stabilization (typically 60 seconds minimum) [15] [9] [21]
- Do not rush through tests or cut test time short [20]
- Maintain steady voltage application throughout the test period [2]

5. Monitoring:

- Mr. Com Continuously monitor the test instrument during testing [3]
- Watch for unusual readings or fluctuations [3]
- Be prepared to terminate the test if anomalies occur [3]

After Testing

1. Discharge the Equipment:

- CRITICAL: Discharge the equipment under test through a suitable resistor [2] [3] [6]
- Use a resistor sized to limit instantaneous current to 1 ampere [6]
- Minimum discharge time should equal four times the voltage application duration [6]
- For example, if voltage was applied for 60 seconds, discharge for at least 240 seconds (4 minutes) [6]
- Ground the equipment through the discharge resistor [15] [14] [9]
- Verify zero voltage before touching any conductors [6]

2. Verify Safe Conditions:

- Confirm no residual voltage exists [6]
- Check for no discernible return voltage after ground is removed [6]
- Ensure all stored energy is dissipated [2] [6]

3. Reconnection:

- Remove lockout/tagout devices only after verification of safe conditions [15] [14]
- Reconnect all previously disconnected components [2] [14]
- Restore all jumpers, surge arresters, and control circuits [9] [21]
- Verify proper reconnection before energizing [14]

4. Documentation:

- Record all test results immediately [2] [20]
- Document test conditions (temperature, humidity, equipment status) [21] [20]
- Note any abnormalities or concerns [20]
- Sign and date all test records [24] [20]

Specific Safety Warnings

High Voltage Hazard:

- Megger instruments generate dangerous voltages that can cause severe injury or death $^{[2]}$ $^{[19]}$ $^{[20]}$
- Even after testing is complete, equipment under test retains charge due to capacitance [6]
- Always treat test equipment and tested equipment as potentially energized [20]

Equipment Damage Prevention:

- Use meggers only for high-resistance measurements (insulation testing) [2] [19]
- Never use a megger on energized circuits [2] [14] [19]
- Do not test sensitive electronic components without proper isolation [3] [14]
- Select appropriate test voltage to avoid damaging insulation [20]

Qualified Personnel Only:

- Only trained and authorized personnel should perform megger testing [20] [23]
- Ensure operators understand the equipment, procedures, and hazards [20]
- Provide comprehensive training before allowing independent testing [20]

Test Voltage Selection

Selecting the appropriate test voltage is critical for obtaining accurate results without damaging the equipment under test $^{[15]}$ $^{[3]}$ $^{[20]}$.

Standard Test Voltages

Megger instruments are available with various output voltages. Common standard voltages include [1] [1] [2] [3]

- 50V, 100V, 125V, 250V
- 500V, 1000V (1kV)
- 2500V (2.5kV), 5000V (5kV)
- 10,000V (10kV), 15,000V (15kV)

Voltage Selection Guidelines

The test voltage should be selected based on the rated operating voltage of the equipment being tested $\frac{[15]}{3}$ $\frac{[3]}{4}$ $\frac{[4]}{3}$.

General Rule: The test voltage should typically be 2-3 times the rated operating voltage of the equipment, but should not exceed the insulation system's design limits $^{[3]}$ $^{[20]}$.

Standard Recommendations (per IEC 60364-6 and IEEE 43): [4] [6] [25]

Equipment Rated Voltage	Recommended Test Voltage	Minimum Insulation Resistance
SELV/PELV (< 50V AC or < 120V DC)	250V DC	0.5 ΜΩ
Up to 500V	500V DC	1.0 ΜΩ
501V to 1000V	1000V DC	1.0 ΜΩ
Above 1000V	1000V DC or higher	Per manufacturer specifications

Specific Equipment Guidelines: [15] [9] [21] [13]

- LT Cables (Low Voltage): 500V or 1000V DC megger [15]
- HT Cables (High Voltage up to 33kV): 2.5kV or 5kV DC megger [15]
- Motors (up to 600V): 500V or 1000V DC [26] [13]
- Motors (high voltage): 2500V or 5000V DC [26]
- Transformers (LV side up to 1kV): 500V to 1000V DC [9] [21] [13]
- Transformers (HV side above 1kV): 2.5kV to 5kV DC [9] [21] [13]
- Switchgear (33kV GIS): 5kV or 10kV DC [27]
- Control Panels and Busbars: 500V to 1000V DC [28] [29]

Important Considerations

- **1. Equipment Sensitivity:** Electronic components, variable frequency drives, PLCs, and solid-state controls can be damaged by high test voltages. Always disconnect or isolate sensitive components before testing [3] [14] [20].
- **2. Manufacturer Specifications:** Always consult equipment manufacturer documentation for recommended test voltages [3] [20].
- **3. Progressive Testing:** For equipment of unknown condition, start with lower test voltage and progressively increase if initial results are acceptable [3] [20].
- **4. Standards Compliance:** Adhere to applicable industry standards (IEEE 43, IEC, NFPA) for your specific application [4] [6] [30].

Minimum Acceptable Insulation Resistance Values

Determining whether insulation resistance is acceptable requires comparison against established criteria based on equipment type, voltage rating, and applicable standards [1] [2] [9].

General Formula

A commonly used rule of thumb for minimum acceptable insulation resistance [2] [14] [9]:

IR min (in $M\Omega$) = kV + 1

Where kV = rated service voltage in kilovolts

Example: For an 11kV transformer:

IR min = $11 + 1 = 12 \text{ M}\Omega$ minimum acceptable

However, many installations require significantly higher values than this minimum [2].

Interpretation of Insulation Resistance Values

General Guidelines (for equipment operating up to 1000V): [1] [2]

Insulation Resistance Value	Insulation Condition
Below 1 MΩ	Poor - Immediate attention required
1-5 ΜΩ	Questionable - Investigate and monitor
5-10 ΜΩ	Marginal - Schedule maintenance
10-50 ΜΩ	Good - Acceptable for operation
50-100 ΜΩ	Very Good - Healthy insulation
100 $M\Omega$ and above	Excellent - Optimal condition

Equipment-Specific Minimum Values

Power Cables: [15] [14] [31]

The recommended minimum insulation resistance for cables:

IR min = 1 M Ω per 1,000V of rated voltage, with a minimum of 1 M Ω [31]

For a 33kV HT cable: IR min = 33 M Ω (though actual values often range from 1 G Ω to 200 G Ω) [2]

Transformers: [9] [21]

Transformer Voltage Class	Minimum IR Value (1 minute)	Test Voltage
415V (below 1kV)	100 ΜΩ	500V (LV), 2.5kV (HV)
Up to 6.6kV	200 ΜΩ	500V (LV), 2.5kV (HV)
6.6kV to 11kV	400 ΜΩ	500V (LV), 2.5kV (HV)

Transformer Voltage Class	Minimum IR Value (1 minute)	Test Voltage
11kV to 33kV	500 ΜΩ	1000V (LV), 5kV (HV)
33kV to 66kV	600 ΜΩ	1000V (LV), 5kV (HV)
66kV to 132kV	600 ΜΩ	1000V (LV), 5kV (HV)
132kV to 220kV	650 ΜΩ	1000V (LV), 5kV (HV)

Motors and Generators: [26] [30]

For rotating machinery, IEEE Standard 43-2000 provides detailed guidelines [6] [30]:

Minimum IR at 40° C = kV + 1 (in M Ω)

Motor Winding Temperature (after correction to 40°C)	Insulation Condition
Below 1 MΩ	Poor - Do not energize, requires repair
1-10 ΜΩ	Moderate - Investigate before operation
10-100 ΜΩ	Good - Acceptable for operation
Above 100 MΩ	Excellent - Healthy insulation

Switchgear and Busbars: [28]

Minimum insulation resistance: 1 M Ω per 1,000V of rated voltage + 1 M Ω

Control Panels: [29] [32]

Typical acceptance criteria: Minimum 1 M Ω for low-voltage panels

Acceptance Test vs. Maintenance Test Values

Acceptance Testing (New Equipment): [3] [13]

- Minimum 20 M Ω recommended, with preference for values above 1000 M Ω
- Higher standards apply for new installations to establish baseline [13]

Maintenance Testing (In-Service Equipment): [2] [3]

- Compare against baseline established during acceptance testing [2] [3]
- Trending is more important than absolute values [2] [12]
- Significant decrease from previous readings (>25-30%) warrants investigation [2] [12]

Temperature Correction

Insulation resistance values vary significantly with temperature. All readings should be corrected to a standard base temperature for meaningful comparison [33] [6] [34] [35].

Standard Base Temperatures:

- 40°C (104°F) IEEE 43 standard for rotating machinery [6] [30]
- 20°C (68°F) Common for transformers and cables [33] [35]

General Rule: For every 10°C increase in temperature, insulation resistance approximately halves. Conversely, for every 10°C decrease, resistance approximately doubles $^{[33]}$ $^{[6]}$ $^{[36]}$.

Correction Formula (IEEE 43-2000): 6

$$RC=RT\times KT$$

Where:

- R C = Corrected insulation resistance at base temperature (40°C)
- R T = Measured insulation resistance at temperature T
- K_T = Temperature correction factor at temperature T

Temperature Correction Factors (IEEE 43-2000 for Class B Insulation): [6] [34]

Temperature (°C)	Correction Factor to 40°C
10	0.25
20	0.76
30	1.28
40	1.00
50	2.58
60	4.50

Example: If measured IR = 160 M Ω at 20°C: Corrected IR at 40°C = 160 × 0.76 = 122 M Ω [34]

For Oil-Filled Transformers (to 20°C base): [35]

Temperature (°C)	Correction Factor to 20°C
10	0.50
20	1.00
30	1.98
40	3.95
50	7.85
60	15.85

Important Notes:

- Temperature correction is essential for meaningful trend analysis $^{[33]}$ $^{[6]}$ $^{[34]}$
- For temperatures below dew point, correction introduces unacceptable error and should not be used [6]

• Individual temperature compensation methods are more accurate than generic factors [33]

Advanced Diagnostic Tests

Beyond basic insulation resistance measurement, advanced diagnostic tests provide deeper insights into insulation condition $^{[16]}$ $^{[3]}$ $^{[5]}$ $^{[37]}$ $^{[38]}$ $^{[12]}$.

Polarization Index (PI) Test

Definition: [5] [37] [38]

PI = R_10min / R_1min

Where:

- R 10min = Insulation resistance measured at 10 minutes
- R 1min = Insulation resistance measured at 1 minute

Procedure:

- 1. Apply test voltage continuously for 10 minutes [5] [37]
- 2. Record insulation resistance at 1 minute [5]
- 3. Continue applying voltage and record resistance at 10 minutes [5]
- 4. Calculate PI ratio [5]

Interpretation (per IEEE 43-2000): [5] [37] [38]

PI Value	Insulation Condition	
Below 1.0	Dangerous - Do not energize	
1.0 to 1.25	Questionable - Investigate	
1.25 to 2.0	Fair - May need attention	
2.0 to 4.0	Good - Acceptable	
Above 4.0	Excellent - Very good condition	

IEEE 43-2000 Recommended Minimum PI Values: [5]

Insulation Class	Minimum PI Value
Class A	1.5
Class B	2.0
Class F	2.0
Class H	2.0

Applications:

- Primarily used for form-wound motors and generators [5] [37] [12]
- Excellent for detecting moisture in insulation systems [37] [38]
- Useful for assessing whether insulation is brittle or delaminated [12]
- More reliable than spot readings for older or contaminated equipment [37]

Advantages:

- Temperature correction not required (ratio eliminates temperature effect) [37] [38]
- Better indicator of insulation condition than single-point readings [37] [38]
- Detects moisture and contamination effectively [37] [38]

Dielectric Absorption Ratio (DAR) Test

The DAR test is a shorter alternative to the PI test, useful when leakage current stabilizes quickly [5] [37] [38] [12]

u.com

Definition: [5] [37] [38]

DAR = R 60sec / R 30sec

Where:

- R 60sec = Insulation resistance at 60 seconds
- R 30sec = Insulation resistance at 30 seconds.

Procedure:

- 1. Apply test voltage continuously for 60 seconds [37]
- 2. Record insulation resistance at 30 seconds [37]
- 3. Continue and record resistance at 60 seconds [37]
- 4. Calculate DAR ratio [37]

Interpretation: [37] [38]

DAR Value	Insulation Condition
Below 1.0	Poor - Immediate attention required
1.0 to 1.25	Questionable - Investigate
1.25 to 1.6	Good - Acceptable
Above 1.6	Excellent - Very good condition

When to Use DAR vs. PI:

- Use DAR when leakage current stabilizes within 1 minute [37] [12]
- Use DAR for modern insulation systems that don't show significant polarization [37] [12]
- Use PI when dealing with traditional form-wound machines and equipment with slower polarization [37] [12]

If PI results in a value of 1.0, DAR should be used instead [12]

Step Voltage Test

The step voltage test applies progressively higher voltages to detect insulation weaknesses that may not appear at lower voltages $^{[16]}$ $^{[3]}$.

Procedure:

- 1. Start with lowest voltage (e.g., 500V) [16]
- 2. Apply for specified duration (typically 60 seconds) $[\underline{16}]$
- 3. Record insulation resistance $[\underline{^{16}}]$
- 4. Increase to next voltage level (e.g., 1000V, 2500V, 5000V) [16]
- 5. Repeat measurement at each level [16]
- 6. Analyze resistance values at different voltages $[\underline{16}]$

Interpretation:

- Good insulation shows relatively constant or slightly increasing resistance as voltage increases [16]
- Significant decrease in resistance at higher voltages indicates insulation weakness [16]
- Reveals defects not visible at standard test voltages [16] [30]

Applications:

- Critical equipment assessment [16]
- Pre-commissioning tests for high-voltage equipment [16]
- Investigation of suspected insulation problems [16]

Dielectric Discharge Test

This test measures how insulation discharges after being energized, useful for identifying trapped charges and insulation condition $^{[\underline{16}]}$ $^{[\underline{3}]}$.

Procedure:

- 1. Apply test voltage for specified time (e.g., 1 minute) [16]
- 2. Remove voltage and short-circuit the terminals $[\underline{16}]$
- 3. Measure discharge current or voltage over time $[\underline{16}]$
- 4. Analyze discharge characteristics [16]

Applications:

- Detecting moisture in insulation [16]
- Identifying capacitive effects in long cables [16]
- Assessing quality of solid dielectric materials [16]

Ramp Testing

Gradually increases test voltage while monitoring leakage current to detect non-linear behavior indicating insulation degradation $[\underline{16}]$.

Megger Testing Procedure for Cables

Cables are among the most frequently tested electrical components using megger tests. Proper testing procedures ensure cable integrity before commissioning and during routine maintenance [15] [2] [<u>14]</u>

Types of Cables and Test Voltage Selection

Low Voltage (LT) Cables:

• Operating voltage: Up to 1kV [15]

• Test voltage: 500V or 1000V DC [15]

u.com • Examples: 230V/400V distribution cables, control cables

High Voltage (HT) Cables:

Operating voltage: Above 1kV to 33kV^[15]

• Test voltage: 2.5kV or 5kV DC [15] [2]

• Examples: 11kV, 22kV, 33kV distribution cables

Extra High Voltage (EHV) Cables:

• Operating voltage: Above 33kV^[2]

• Test voltage: 5kV, 10kV, or higher 2

Safety Precautions Specific to Cable Testing

- 1. Disconnect both ends of the cable from all equipment and power sources [15] [14]
- 2. Discharge the cable through earth before testing (cables store significant charge) [15] [14]
- 3. Ensure both cable ends are accessible and visible $^{[\underline{15}]}$
- 4. Lock out and tag out all associated circuit breakers and disconnects [15]
- 5. Post warning signs at both ends of the cable run [15]
- 6. Keep personnel away from both ends during testing $[\underline{15}]$
- 7. After testing, discharge the cable through a suitable resistor for at least 4 times the test duration [15] [14]

Required Equipment for Cable Testing

- Calibrated megger (appropriate voltage rating) [15]
- Lock out tag out (LOTO) safety kit [15]
- Discharge wire (minimum 5 meters) with appropriate insulation [15]
- Cable disconnecting tools [15]
- Personal protective equipment (PPE) [15]
- Thermometer (for temperature recording) [14]
- Test result documentation forms [15] [24]
- Warning signs and barriers [15]

Testing Connections for Different Cable Types

The specific test points depend on cable construction (number of conductors, presence of armor, JIII. COM shielding, etc.) [15] [14].

For Single-Core Cable:

- 1. Core to armor/sheath [15] [14]
- 2. Core to earth [15] [14]

For Two-Core Cable: [15] [14]

- 1. Core 1 to armor/sheath
- 2. Core 2 to armor/sheath
- 3. Core 1 to Core 2
- 4. Both cores (connected together) to armor/sheath

For Three-Core Cable (e.g., R-Y-B phases): [15] [14]

- 1. R phase to armored earth
- 2. Y phase to armored earth
- 3. B phase to armored earth
- 4. R phase to Y phase
- 5. Y phase to B phase
- 6. R phase to B phase

For Three-Core Cable with Neutral: [15]

- 1. R phase to armored earth
- 2. Y phase to armored earth
- 3. B phase to armored earth
- 4. R phase to Y phase
- 5. Y phase to B phase

- 6. R phase to B phase
- 7. R phase to neutral
- 8. Y phase to neutral
- 9. B phase to neutral
- 10. Neutral to earth

Step-by-Step Procedure for Cable Testing

Preparation Phase

Step 1: Isolation and Safety

- 1. Identify the cable to be tested and verify against drawings $[\underline{15}]$ $[\underline{14}]$
- 2. Open and lock out circuit breakers at both ends $[\underline{15}]$
- 3. Disconnect the cable from all terminal points at both ends $[\underline{15}]$ $[\underline{14}]$
- 4. Apply LOTO procedures with personal locks and tags $^{[\underline{15}]}$
- 5. Test for absence of voltage at both ends using a calibrated voltage tester [15] [14]

Step 2: Discharge Existing Charge

- 1. Connect a discharge wire (5m minimum) from each conductor to earth [15]
- 2. Leave connected for at least 5 minutes to fully discharge [15]
- 3. Remove discharge connections $[\underline{15}]$

Step 3: Visual Inspection

- 1. Inspect cable terminations for damage, moisture, or contamination $[\underline{14}]$
- 2. Check for proper cable identification and labeling $[\underline{14}]$
- 3. Ensure cable is clean and dry $^{\left[\underline{14}\right]}$
- 4. Record ambient temperature [14]

Step 4: Megger Preparation

- 1. Select appropriate megger with correct voltage rating $[\underline{15}]$
- 2. Verify megger calibration is current $^{\left[\underline{15}\right]}$
- 3. Test megger functionality:

 - Short circuit test: Leads shorted together should show zero (0) [15] [10]
- 4. Prepare test leads and ensure they are in good condition $[\underline{14}]$

Testing Phase - Analog Megger

Step 5: Connect Test Leads

1. Connect the megger's black (negative) probe to earth/armor/sheath (as per test matrix) [15]

OM

- 2. Connect the megger's red (positive) probe to the conductor under test [15]
- 3. Ensure connections are secure and not touching any other conductors [15]

Step 6: Perform Test

- 1. Start cranking the handle at steady speed of approximately 120-160 rpm $^{[15]}$ $^{[10]}$
- 2. Continue cranking for at least 60 seconds [15]
- 3. While cranking, observe the meter reading [15]
- 4. Note the resistance value displayed on the scale $[\underline{15}]$

Step 7: Interpret Results

- Zero (0) reading: Cable is shorted FAIL [15]
- Infinity (∞) reading: Cable insulation is intact PASS [15]
- Below 2 M Ω : Cable insulation is weak Investigate [15]
- Above 2 M Ω : Cable is acceptable for the test voltage applied [15]

Step 8: Record Results

- 1. Document the resistance value in the test report [15] [24]
- 2. Record test voltage, temperature, and date/time [24]
- 3. Note tester identification and calibration information [24]

Step 9: Repeat for All Test Points

- 1. Discharge the cable through earth wire after each test [15]
- 2. Reconfigure connections for next test point per test matrix [15]
- 3. Repeat steps 5-8 for each combination $[\underline{15}]$

Testing Phase - Digital Megger

Step 5: Connect Test Leads

- 1. Select appropriate test voltage on the megger [15]
- 2. Connect test probes to the designated test points (as per test matrix) [15]
- 3. Ensure secure connections [15]

Step 6: Perform Test

- 1. Press and hold the TEST button [15]
- 2. The megger will automatically apply the test voltage $[\underline{15}]$
- 3. Wait for 60 seconds (or as specified by test procedure) [15]

4. Observe the digital display for stabilization [15]

Step 7: Interpret Results

- Zero (0) or very low reading: Cable is shorted FAIL [15]
- Very high reading (approaching infinity or display shows "OL"): Cable insulation is good -PASS [15]
- Moderate reading (1-10 M Ω): Borderline investigate and compare with standards [15]

Step 8: Record Results

- 1. Note the exact resistance value from digital display [15]
- 2. Record test voltage, temperature, date, and time [15] [24]
- 3. Document any observations or anomalies [24]

Step 9: Repeat for All Test Points

- 1. Press DISCHARGE button (if available) or manually discharge through earth wire [15] TII. COIN
- 2. Wait for complete discharge [15]
- 3. Reconfigure for next test point [15]
- 4. Repeat process for all required measurements [15]

Post-Testing Phase

Step 10: Final Discharge

- 1. After all tests are complete, thoroughly discharge all conductors $^{[15]}$ $^{[14]}$
- 2. Connect each conductor to earth through discharge resistor [15]
- 3. Leave connected for minimum of 4 times the total test duration $^{[\underline{6}]}$
- 4. Verify zero voltage before handling [6]

Step 11: Reconnection

- 1. Reconnect all cable terminations properly [15] [14]
- 2. Verify correct phase sequence and connections [15]
- 3. Tighten all terminals to specified torque [15]
- 4. Replace any removed covers or protection [15]

Step 12: Documentation and Sign-off

- 1. Complete all test documentation $[\underline{15}]$ $[\underline{24}]$
- 2. Compare results against acceptance criteria $^{[\underline{15}]}$ $^{[\underline{2}]}$
- 3. If results are unsatisfactory, tag cable "DO NOT ENERGIZE" and notify responsible personnel $^{[15]}$
- 4. If results are acceptable, sign off on test report $[\underline{24}]$
- 5. Remove LOTO devices [15]
- 6. File documentation in maintenance records [24]

Acceptance Criteria for Cable Testing

New Cable Installation (Acceptance Test): [3] [13]

- Minimum 100 MΩ recommended [13]
- Prefer values above 1000 $M\Omega$ for new cables $^{[\underline{3}]}$
- All phase-to-phase and phase-to-ground readings should be balanced within 20% [13]

Existing Cable (Maintenance Test): [15] [2] [14]

- Minimum: 1 M Ω per kV of rated voltage + 1 M Ω ^[2] [14]
- Compare with previous test records significant decrease warrants investigation [2]
- For LT cables: Minimum 2 M Ω typically required [15]
- For HT cables: Values typically in $G\Omega$ range [2]

Special Considerations for Cable Testing

Long Cable Runs: [16]

- Long cables have higher capacitance and require longer discharge times [16]
- May show lower IR values due to higher surface area [16]
- Consider capacitance effects in result interpretation [16]

Shielded Cables: [14]

- Use guard terminal to isolate shield from measurement [14]
- Test shield to ground separately [14]

Multi-Conductor Control Cables: [14] [13]

- Test each conductor individually to ground [14]
- Test between all conductor pairs [14]
- Document each measurement clearly [24]

Cables in Ducts or Conduit:

- Moisture in ducts can affect readings $^{[\underline{2}]}$
- Test when cables are dry for accurate results $^{[\underline{2}]}$

Temperature Effects: [33] [6]

- Record cable temperature during testing $^{[\underline{14}]}$ $^{[\underline{33}]}$
- Apply temperature correction for trending analysis [33] [6]
- Avoid testing when cable temperature is below dew point [6]

Troubleshooting Low Insulation Resistance in Cables

If megger test reveals low insulation resistance:

- 1. **Verify Test Setup:** Ensure proper connections and megger functionality $[\underline{15}]$
- 2. Check for Moisture: Dry cable using heaters or infrared lamps and retest [2]
- 3. **Inspect for Damage:** Visually inspect for physical damage, cuts, or deterioration $[\underline{14}]$
- 4. Locate Fault: Use fault location techniques (Murray loop, bridge methods) to pinpoint fault location [39]
- 5. Assess Repair vs. Replacement: Determine if cable can be repaired or must be replaced [2]
- 6. **Document Findings:** Record all troubleshooting steps and results [24]

Megger Testing Procedure for Transformers

Transformers are critical components in electrical systems, and regular insulation resistance testing is essential to ensure their reliability and safety [2] [9] [21] [40].

com **Purpose of Transformer Insulation Resistance Testing**

Transformer IR testing serves to [9] [21]:

- 1. Verify insulation integrity between windings and ground [9]
- 2. Detect moisture ingress in insulation system [9] [21]
- 3. Assess dryness of paper insulation [21]
- 4. Identify contamination or deterioration [9] [21]
- 5. Detect major internal defects [21]
- 6. Establish baseline for trending analysis [9] [21]

Test Equipment Required

- Insulation resistance tester (megger) with appropriate voltage rating [9] [21]
 - 500V or 1000V for LV windings [9] [21]
 - 2.5kV to 5kV for MV windings [9] [21]
 - 5kV to 10kV for HV windings [9] [21]
- Thermometer for oil and winding temperature measurement [21] [40]
- Discharge equipment (resistor and grounding cable) [9]
- Test leads rated for test voltage [9]
- Documentation forms [9] [21]
- LOTO equipment [9]
- PPE appropriate for voltage levels [9]

Safety Precautions for Transformer Testing

1. De-energize and Isolate:

- $\circ~$ Open and lock out all primary and secondary circuit breakers $^{[\underline{9}]}$ $^{[\underline{21}]}$
- $\circ~$ Disconnect lightning arresters and surge protection devices $^{[\underline{9}]}$ $[\underline{21}]$
- Remove all jumpers and connections [9]
- Apply LOTO procedures ^[9]

2. Disconnect Neutral:

- $\circ~$ Disconnect neutral point from ground/earth before testing $^{[\underline{9}]}$ $^{[\underline{21}]}$ $^{[\underline{40}]}$
- \circ This is critical for accurate measurements [21]

3. Discharge Capacitance:

- Release stored capacitance in windings before testing [9]
- Ground all windings temporarily [9]

4. Temperature Considerations:

- Do not test transformers under vacuum [9]
- $\circ~$ Ensure winding temperature is above dew point $^{[\underline{21}]}$ $^{[\underline{22}]}$
- Record oil temperature accurately [21] [40]

5. Clean Bushings:

- \circ Ensure all bushings are clean and dry $^{[9]}$ [21]
- $\circ~$ Prevents surface leakage affecting measurements $^{[\underline{9}]}$ $^{[\underline{21}]}$

6. Guard Terminals:

 \circ Protect terminals to prevent surface leakage over terminal bushings $^{[\underline{9}]}$ $^{[\underline{21}]}$

Test Voltage Selection for Transformers

Transformer Voltage Rating	LV Side Test Voltage	HV Side Test Voltage
415V	500V DC	2.5kV DC
Up to 6.6kV	500V DC	2.5kV DC
6.6kV to 11kV	500V DC or 1000V DC	2.5kV DC
11kV to 33kV	1000V DC	5kV DC
33kV to 66kV	1000V DC	5kV DC
66kV and above	1000V DC	5kV to 10kV DC

Transformer IR Test Combinations

Three primary insulation resistance measurements are performed on transformers [9] [21] [40]:

Test 1: HV Winding to Earth (Ground)

- Tests insulation between high-voltage winding and transformer tank/ground
- LV winding is grounded during this test

Test 2: LV Winding to Earth (Ground)

- Tests insulation between low-voltage winding and transformer tank/ground
- HV winding is grounded during this test

Test 3: HV Winding to LV Winding

- Tests insulation between HV and LV windings
- Transformer tank is grounded during this test

For three-phase transformers, all three phases of each winding are connected together for testing $^{[2]}$

Step-by-Step Procedure for Transformer IR Testing

Preparation

Step 1: Isolation and Lockout

- 1. Obtain necessary work permits and authorizations [9]
- 2. Open and lock out all incoming and outgoing circuit breakers [9] [21]
- 3. Open disconnect switches on both primary and secondary sides [9]
- 4. Apply LOTO with personal locks and tags [9]
- 5. Verify zero voltage on all terminals [9]

Step 2: Disconnect Protective Devices

- 1. Disconnect lightning arresters from all bushing terminals [9] [21]
- 2. Remove any surge protection devices [9]
- 3. Disconnect all LV and HV surge diverter earth connections [9]
- 4. Remove all jumpers between bushings [9]

Step 3: Disconnect Neutral

- 1. Disconnect transformer neutral bushing from ground/earth [9] [21] [40]
- 2. This is essential for accurate IR measurements [21]
- 3. Keep neutral isolated throughout testing [9]

Step 4: Preparation and Inspection

- 1. Clean all bushings thoroughly to remove dirt, moisture, dust [9] [21]
- 2. Ensure dry conditions wipe bushings if necessary [9]
- 3. Short-circuit all terminals of HV winding together [9] [21]
- 4. Short-circuit all terminals of LV winding together [9] [21]
- 5. Record ambient temperature and oil temperature $^{[9]}$ $^{[21]}$ $^{[40]}$
- 6. Wait until oil/winding temperature stabilizes [21]

Step 5: Discharge Windings

- 1. Ground all windings temporarily to discharge any stored energy [9]
- 2. Leave grounded for sufficient time (minimum 5 minutes) [9]
- 3. Remove temporary grounds before testing [9]

Step 6: Verify Megger

- 1. Check megger calibration status [9]
- 2. Test megger: open circuit should read infinity, short circuit should read zero
- Mr. Col 3. Select appropriate test voltage based on transformer ratings [9] [21]

Test Execution

Test 1: HV Winding to Earth

Step 7: Connect for HV-to-Earth Test

- 1. Connect all HV winding terminals together (if not already done) $^{[\underline{9}]}$ $^{[\underline{21}]}$
- 2. Connect all LV winding terminals to transformer tank/earth $^{[9]}$ $^{[21]}$
- 3. Connect megger LINE terminal to the HV winding terminals $^{[\underline{9}]}$ $^{[\underline{21}]}$
- 4. Connect megger EARTH terminal to transformer tank earth point $^{[\underline{9}]}$ $^{[\underline{21}]}$

Step 8: Perform HV-to-Earth Test

- 1. Apply test voltage (typically 2.5kV or 5kV for HV winding) [9] [21]
- 2. Record resistance reading at 15 seconds [21]
- 3. Continue test and record reading at 60 seconds [9] [21]
- 4. Continue test and record reading at 600 seconds (10 minutes) [21]
- 5. Monitor for stabilization of readings [9]

Step 9: Record Results

- 1. Note all resistance values with timestamps [21]
- 2. Record oil temperature at time of test [21] [40]
- 3. Calculate DAR (R60/R15) if applicable [21]
- 4. Calculate PI (R600/R60) if applicable [21]

Test 2: LV Winding to Earth

Step 10: Discharge and Reconfigure

- 1. Stop test and discharge HV winding through earth resistor [9]
- 2. Wait for complete discharge (4× test duration minimum) [6]
- 3. Verify zero voltage [6]

Step 11: Connect for LV-to-Earth Test

- 1. Connect all LV winding terminals together [9] [21]
- 2. Connect all HV winding terminals to transformer tank/earth [9] [21]
- 3. Connect megger LINE terminal to LV winding terminals [9] [21]
- 4. Connect megger EARTH terminal to transformer tank earth point [9] [21]

Step 12: Perform LV-to-Earth Test

- 1. Apply test voltage (typically 500V or 1000V for LV winding) [9] [21]
- 2. Record resistance at 15 seconds, 60 seconds, and 600 seconds [21]
- 3. Monitor for stable readings [9]

Step 13: Record Results

- 1. Document all resistance values [21]
- 2. Record temperature [21]
- 3. Calculate ratios if required [21]

Test 3: HV Winding to LV Winding

Step 14: Discharge and Reconfigure

- 1. Discharge LV winding completely [9]
- 2. Verify zero voltage [6]

Step 15: Connect for HV-to-LV Test

- 1. Connect all HV winding terminals together [9] [21]
- 2. Connect all LV winding terminals together $^{[9]}$ $^{[21]}$
- 3. Ensure transformer tank is grounded [9] [21]
- 4. Connect megger LINE terminal to HV winding [9] [21]
- 5. Connect megger EARTH terminal to LV winding $^{[9]}$ $^{[21]}$

Step 16: Perform HV-to-LV Test

- 1. Apply appropriate test voltage (typically 5kV) [9] [21]
- 2. Record resistance at 15 seconds, 60 seconds, and 600 seconds [21]
- 3. Monitor stabilization [9]

Step 17: Record Results

- 1. Document all measurements [21]
- 2. Record temperature [21]
- 3. Calculate diagnostic ratios [21]

Post-Testing

Step 18: Final Discharge

- 1. Discharge all windings thoroughly through discharge resistor $^{[\underline{9}]}$ $^{[\underline{6}]}$
- 2. Maintain discharge for minimum $4 \times$ total test time $[\underline{6}]$
- 3. Verify zero voltage on all windings $^{[\underline{6}]}$

Step 19: Reconnection

- 1. Reconnect all lightning arresters [9] [21]
- 2. Reconnect neutral to earth/ground [9] [21]
- 3. Restore all jumpers and connections [9]
- 4. Reconnect LV surge diverter earth connections [9]
- 5. Verify all connections are correct and secure [9]

Step 20: Documentation and Analysis

- 1. Complete test report with all measurements [21]
- 2. Apply temperature correction to normalize values to 20°C or 40°C $^{[21]}$ $^{[33]}$ $^{[35]}$

v.com

- 3. Calculate PI and DAR values [21] [5]
- 4. Compare results against minimum acceptable values [9] [21]
- 5. Compare with previous test records for trending [9] [21]
- 6. Sign and date test report [21]

Step 21: Return to Service

- 1. Remove LOTO devices only after all work is complete and verified [9]
- 2. Conduct final visual inspection $^{[\underline{9}]}$
- 3. Notify operations that transformer is ready for service $^{[\underline{9}]}$

Minimum Acceptable IR Values for Transformers

Absolute Minimum Values (1 minute reading): [9] [21]

Transformer Voltage Class	Minimum IR (MΩ)
415V (below 1kV)	100
Up to 6.6kV	200

Transformer Voltage Class	Minimum IR (MΩ)
6.6kV to 11kV	400
11kV to 33kV	500
33kV to 66kV	600
66kV to 132kV	600
132kV to 220kV	650

Calculated Values: [9] [40]

For single-phase transformers:

IR $(M\Omega) = C \times E / \sqrt{kVA}$

For three-phase transformers (star type):

IR $(M\Omega) = C \times E$ (phase-neutral) / \sqrt{kVA}

For three-phase transformers (delta type):

IR $(M\Omega) = C \times E$ (phase-phase) / \sqrt{kVA}

Where:

- C = 1.5 for oil-filled transformers with oil tank
- C = 30 for oil-filled transformers without oil tank or dry-type transformers
- E = Voltage (kV)
- kVA = Transformer rating

Polarization Index (PI) Values: [21] [5]

PI Value	Insulation Condition
Below 1.0	Dangerous
1.0 to 1.5	Questionable
1.5 to 2.0	Fair
2.0 to 4.0	Good
Above 4.0	Excellent

Minimum PI: Should be greater than 1.5 for acceptable insulation [21] [5]

Temperature Correction for Transformer IR Values

Since insulation resistance varies significantly with temperature, all readings must be corrected to a standard base temperature (typically 20°C for transformers) [21] [33] [35].

Use the correction factors provided in the earlier section "Minimum Acceptable Insulation Resistance Values - Temperature Correction" to normalize all readings before comparison and trending.

Interpretation and Trending

- 1. **Absolute Values:** Compare measured (corrected) values against minimum standards [9] [21]
- 2. **Trending:** Track IR values over time gradual decrease indicates aging, sudden decrease indicates problem [9] [21]
- 3. **PI/DAR Analysis:** Low ratios indicate moisture or contamination [21] [5]
- 4. **Comparison:** Compare HV and LV readings both should be reasonably balanced [21]

Special Tests for Transformers

Core Insulation Test: [21]

- Test between core and frame: Minimum acceptable value specified by manufacturer
- Test between core and tank: Minimum acceptable value specified by manufacturer
- Test between frame and tank: Minimum acceptable value specified by manufacturer
- Uses 2.5kV megger typically [21]

Tap Changer Testing:

- Test insulation of tap changer mechanism separately if accessible [21]
- Follow manufacturer recommendations [21]

Megger Testing Procedure for Motors and Generators

Motors and generators (rotating machinery) require regular insulation resistance testing as part of preventive maintenance programs [2] [41] [26] [42] [22] [30].

Purpose of Motor/Generator IR Testing

- 1. Verify winding insulation integrity [41] [26] [30]
- 2. Detect moisture absorption in windings [41] [26] [12]
- 3. Identify contamination (dirt, oil, dust) on windings [12] [30]
- 4. Assess insulation aging and deterioration $^{[\underline{41}]}$ $^{[\underline{30}]}$
- 5. Predict potential failures before they occur $\frac{[41]}{26}$
- 6. Determine if motor can be subjected to high-potential (hi-pot) testing safely $\frac{12}{2}$

Test Voltage Selection for Motors

Motor Rated Voltage	Recommended Test Voltage
Up to 240V	500V DC
240V to 600V	500V or 1000V DC
600V to 1000V	1000V DC
1000V to 2400V	1000V to 2500V DC

Motor Rated Voltage	Recommended Test Voltage
2400V to 5000V	2500V DC
Above 5000V	2500V to 5000V DC

Always consult motor manufacturer specifications for recommended test voltages [41] [26] [30].

Safety Precautions for Motor Testing

1. Disconnect from Power:

- Open and lock out motor starter or circuit breaker [41] [26] [22]
- Apply LOTO procedures [26] [22]
- Verify zero voltage at motor terminals [41] [26]

2. Disconnect from Load:

- Uncouple motor from driven equipment if possible [26] [13]
- If uncoupling is not possible, ensure driven equipment is free to rotate [13]

3. Disconnect Control Circuits:

- Disconnect motor control circuits and auxiliary devices [41] [26]
- Remove connections to variable frequency drives (VFDs), soft starters, or other electronic controls [41] [26]

4. Discharge Capacitors:

- Discharge any starting capacitors (common in single-phase motors) [41] [26]
- Discharge motor windings before and after testing [41] [6]

5. Temperature Requirements:

- Motor winding temperature must be at least 5°C above dew point before testing [22] [6]
- Record winding temperature for correction factors [22] [6]

6. Clean Windings:

- For accessible motors, clean windings if excessively dirty [41] [12]
- Remove moisture if present by drying before testing [41]

Test Points for Motors

Three-Phase Motors: [41] [26] [42]

- 1. Phase U (or L1) to ground (motor frame)
- 2. Phase V (or L2) to ground (motor frame)
- 3. Phase W (or L3) to ground (motor frame)
- 4. Phase U to Phase V
- 5. Phase V to Phase W
- 6. Phase W to Phase U

Single-Phase Motors: [26]

- 1. Start winding to ground (motor frame)
- 2. Run winding to ground (motor frame)
- 3. Start winding to run winding

DC Motors: [41]

- 1. Armature to ground (motor frame)
- 2. Field winding to ground (motor frame)
- 3. Armature to field winding

Step-by-Step Motor Testing Procedure

Preparation

Step 1: De-energize and Lock Out

- 1. Turn off motor control switch [41] [26]
- Mu.com 2. Open motor circuit breaker or disconnect [41] [26]
- 3. Apply personal LOTO devices [26] [22]
- 4. Verify zero voltage at motor terminal box [41] [26]

Step 2: Disconnect Motor

- 1. Open motor terminal box [41] [26]
- 2. Disconnect motor leads from incoming power cables [41] [26]
- 3. If motor has VFD or soft starter, disconnect motor from drive output [41] [26]
- 4. Disconnect control wiring, thermistors, RTDs, and auxiliary devices [41] [26]
- 5. For single-phase motors, disconnect and discharge starting capacitor [41] [26]

Step 3: Prepare Motor

- 1. If motor is hot from recent operation, allow to cool or record temperature accurately [22] [6]
- 2. Alternatively, if trending data at operating temperature is desired, test while warm and apply temperature correction [6]
- 3. Ensure motor terminal box is dry and clean [41]
- 4. Identify motor terminals: U, V, W (or L1, L2, L3) and ground [41] [26]

Step 4: Record Information

- 1. Motor nameplate data (voltage, current, HP/kW, RPM) [22]
- 2. Motor identification number or location [22]
- 3. Ambient temperature and motor winding temperature [22] [6]
- 4. Date and time of test [22]

Step 5: Verify Megger

- 1. Check megger calibration [41]
- 2. Select appropriate test voltage based on motor rating [41] [26]
- 3. Test megger: infinity on open circuit, zero on short circuit [41]

Testing Phase

Step 6: Phase-to-Ground Tests

For each phase (U, V, W):

- 1. Connect megger LINE (positive) terminal to motor phase terminal [41] [26]
- 2. Connect megger EARTH (negative) terminal to motor frame/ground [41] [26]
- 3. Ensure other phases are not grounded during individual phase tests [41]
- 4. Apply test voltage by pressing TEST button (digital) or cranking handle (analog) $^{[41]}$ $^{[26]}$
- 5. Maintain test for 60 seconds [41] [26]
- 6. Record insulation resistance reading at 60 seconds [41] [26]
- 7. For PI testing, continue to 10 minutes and record reading $^{[\underline{5}]}$ $^{[\underline{37}]}$
- 8. Release test button or stop cranking [41] [26]
- 9. Discharge winding through ground before disconnecting $^{[41]}$ $^{[26]}$

Step 7: Phase-to-Phase Tests

For each phase pair combination:

- 1. Connect megger LINE terminal to first phase $^{[41]}$ $^{[26]}$
- 2. Connect megger EARTH terminal to second phase $^{[\underline{41}]}$ $^{[\underline{26}]}$
- 3. Ensure motor frame is grounded and third phase is isolated $\frac{[41]}{}$
- 4. Apply test voltage for 60 seconds [41] [26]
- 5. Record resistance reading $^{[\underline{41}]}$ $^{[\underline{26}]}$
- 6. Discharge before reconfiguring $^{[\underline{41}]}$ $^{[\underline{26}]}$

Step 8: Calculate Diagnostic Indices

If performing PI or DAR testing:

- 1. Record 1-minute and 10-minute readings for PI calculation $^{[\underline{5}]}$ $^{[\underline{37}]}$
- 2. Calculate PI = R_{10} min / R_{1} min $\frac{[5]}{[37]}$
- 3. Or record 30-second and 60-second readings for DAR $^{[\underline{5}]}$ $[\underline{37}]$
- 4. Calculate DAR = R_{60} sec / R_{30} sec [5] [37]

Post-Testing

Step 9: Final Discharge

- 1. Discharge all motor windings through discharge resistor $^{[\underline{41}]}$ $^{[\underline{6}]}$
- 2. Maintain discharge for at least 4 times the test duration $^{[\underline{6}]}$
- 3. Verify zero voltage before handling windings [6]

Step 10: Reconnect Motor

- 1. Reconnect motor leads to power cables in correct phase sequence $^{[41]}$ $^{[26]}$
- 2. Verify correct rotation direction if this is first installation $^{[\underline{41}]}$ $^{[\underline{26}]}$
- 3. Reconnect control wiring and auxiliary devices [41] [26]
- 4. Reconnect starting capacitor if applicable (single-phase) [41] [26]
- 5. Tighten all terminal connections to specified torque [41]
- 6. Close and secure terminal box [41] [26]

Step 11: Documentation

- 1. Record all IR values in motor maintenance $\log^{[22]}$
- 2. Apply temperature correction to normalize readings to $40^{\circ}C^{[6]}$
- 3. Calculate PI or DAR values [5] [37]
- 4. Compare results with previous tests for trending [41] [26] [22]
- 5. Compare with minimum acceptable values $^{[41]}$ $^{[26]}$ $^{[30]}$
- 6. Sign and date test report [22]

Step 12: Motor Bump Test (Direction Check)

- 1. Remove LOTO devices [41] [26]
- 2. "Bump" motor momentarily to verify correct rotation direction $^{[\underline{26}]}\,[\underline{13}]$
- 3. If rotation is incorrect, reverse two phase connections $^{\left[\underline{26}\right]}$

Step 13: Return to Service

- 1. If IR values are acceptable, motor can be returned to service $^{[\underline{41}]}$ $^{[\underline{26}]}$
- 2. If IR values are questionable or low, further investigation required $^{[\underline{41}]}$ $^{[\underline{26}]}$
- 3. Notify operations of motor status [41]

Minimum Acceptable IR Values for Motors

IEEE 43-2000 Recommendation: [6] [30]

Minimum IR at 40° C = (Rated Voltage in kV) + 1 M Ω

Example:

• For a 460V (0.46kV) motor: Minimum IR = 0.46 + 1 = 1.46 M Ω

• For an 11kV motor: Minimum IR = 11 + 1 = 12 $M\Omega$

Practical Guidelines: [41] [26] [30]

IR Value (corrected to 40°C)	Insulation Condition	Recommendation
Below 1 MΩ	Poor/Dangerous	Do not energize - repair required
1 to 10 MΩ	Questionable	Investigate before operation
10 to 100 MΩ	Good	Acceptable - monitor regularly
100 to 1000 MΩ	Very Good	Excellent condition
Above 1000 M Ω	Excellent	Optimal insulation

Important Notes:

- 1. Always apply temperature correction before comparing values [6] [30]
- 2. Trend analysis is more valuable than single-point readings $^{\underline{[41]}}$ $^{\underline{[26]}}$
- 3. Sudden decrease in IR (>25-30%) warrants immediate investigation [41]
- 4. New motors should show very high IR values (often >1000 M Ω) [41]

Polarization Index for Motors

IEEE 43-2000 Recommended Minimum PI Values: [5] [30]

Motor Insulation Class	Minimum PI Value
Class A	1.5
Class B	2.0
Class F	2.0
Class H	2.0

PI Interpretation for Motors: [5] [37]

PI Value	Insulation Condition
Below 1.0	Dangerous - moisture or contamination present
1.0 to 2.0	Questionable - investigate
2.0 to 4.0	Good - acceptable
Above 4.0	Excellent - very dry, clean insulation

Temperature Correction for Motor Readings

All motor IR readings must be corrected to 40° C base temperature per IEEE 43-2000 for meaningful comparison and trending [6] [30].

Refer to temperature correction factors table in earlier section. Use correction factors appropriate for the motor insulation class.

Troubleshooting Low Motor IR Values

If motor shows low insulation resistance:

1. Verify Test Setup:

- Confirm proper megger operation [41]
- Check test lead connections [41]
- Ensure correct test voltage selection [41]

2. Check for Moisture:

- Moisture is the most common cause of low IR [41] [12]
- Dry motor windings using baking oven (if removable) [41]
- u.com Use infrared lamps or heaters for in-place drying [41]
- Retest after drying [41]

3. Clean Windings:

- Dirty windings reduce IR significantly [12]
- Clean using approved solvents if accessible [41]
- Compressed air cleaning for light dust [41]
- Retest after cleaning [41]

4. Check for Winding Damage:

- Inspect for visible insulation damage, cracks, or burning [41]
- Check for signs of overheating or thermal damage [41]
- Look for evidence of electrical arcing [41]

5. Assess Repair vs. Replacement:

- If cleaning and drying restore acceptable IR, motor can be returned to service [41]
- If IR remains low, motor winding rewind may be necessary [41]
- Consider motor age, criticality, and replacement cost [41]

Special Considerations for Motor Testing

Motors with VFDs:

- Always disconnect motor from VFD before testing [41] [26]
- VFD output electronics can be damaged by megger voltage [41]
- Test motor and VFD separately [41]

Large Motors (above 1000 HP):

- May require higher test voltages (2.5kV to 5kV) [30]
- PI testing strongly recommended [30]
- Perform step voltage testing for comprehensive assessment [30]

Submersible Motors:

- Test cable and motor together initially [22]
- If low IR detected, determine if fault is in cable or motor [22]
- May require special test procedures due to water-filled environment [22]

Motors After Storage:

- Motors in storage absorb moisture over time [41]
- Always test and dry if necessary before placing in service [41]
- Establish storage conditions that minimize moisture absorption [41]

New Motor Acceptance Testing:

- Test before installation to establish baseline [41] [13]
- Should show very high IR values (>1000 M Ω typical) [41]
- Repeat after installation before energizing [41] [13]

Megger Testing Procedures for Other Equipment

Switchgear and Gas Insulated Switchgear (GIS)

High-voltage switchgear requires specialized testing procedures due to the complexity and criticality of these systems [27] [28] [23].

com

Test Voltage Selection:

- For 33kV GIS: 5kV or 10kV DC megger recommended [27]
- For lower voltage switchgear: 2.5kV to 5kV DC [23]

Safety Precautions:

- 1. Complete isolation and LOTO of all circuits [27]
- 2. Discharge all capacitance and stored energy [27]
- 3. Open all grounding switches and earth switches [27]
- 4. Disconnect all cable terminations if testing switchgear only [27]
- 5. Follow manufacturer safety procedures for SF6 or vacuum interrupters [27]

Testing Procedure:

- 1. Isolate the GIS panel or switchgear section under test [27]
- 2. Discharge all components thoroughly [27]
- 3. Test phase-to-earth insulation resistance for each phase [27]

- 4. Test phase-to-phase insulation resistance between all phase combinations [27]
- 5. Test circuit breaker, busbar, disconnector, and cable terminations individually if fault is suspected [27]
- 6. Record all measurements with test duration (1-minute and 10-minute for PI) [27]
- 7. Interpret results based on IEEE 43, IEC 62271-1, or manufacturer standards [27]

Minimum Acceptable Values:

- Typically 1000 M Ω minimum for new GIS [27]
- For maintenance testing, compare with baseline and manufacturer specifications [27]

Busbars

Busbar insulation testing verifies the integrity of insulation between conductors and between conductors and ground $\frac{[28]}{4}$.

FUITU. COM

Test Points: [28]

- Phase R to Earth
- Phase Y to Earth
- Phase B to Earth
- · Phase R to Phase Y
- · Phase Y to Phase B
- · Phase B to Phase R

Procedure: [28]

- 1. Open busbar enclosure and isolate completely $^{{\scriptsize [28]}}$
- 2. Ensure all equipment and cables not being tested are separated from the busbar $\frac{[28]}{}$
- 3. Clean busbar support insulators and check for cracks or damage [28]
- 4. Connect megger test leads to appropriate test points [28]
- 5. Apply test voltage based on busbar voltage class (typically 1000V to 2.5kV) [28]
- 6. Record insulation resistance for each test combination $[\underline{28}]$
- 7. Minimum acceptable: 1 M Ω per 1000V rated voltage + 1 M Ω [28]

Additional Busbar Tests: [28]

- Bus joint resistance test using DLRO (Digital Low Resistance Ohmmeter) [28]
- Contact resistance test at bolted connections [28]
- Partial discharge test for critical applications [28]
- Ampacity testing (heat rise test) for new installations [28]

Circuit Breakers

Circuit breaker insulation testing is typically part of comprehensive circuit breaker maintenance [44].

Test Voltage: 1000V to 5kV DC depending on breaker voltage rating [44]

Test Points:

- Each pole to ground (with breaker open) [44]
- Across open contacts (contact gap resistance) [44]
- Control circuit insulation [44]

Procedure:

- 1. Isolate breaker completely from all circuits [44]
- 2. Open breaker mechanism to separate contacts [44]
- 3. Disconnect control wiring and CT/PT circuits $[\underline{44}]$
- 4. Test each pole to ground with breaker open [44]
- 5. Test across open contacts to verify contact gap $^{\left[\underline{44}\right] }$
- 6. Test control circuits separately [44]
- 7. Compare results with previous tests and manufacturer specifications $^{\left[44\right] }$

Control Panels

Control panels contain sensitive electronics requiring careful testing procedures $\frac{[29]}{32}$.

Safety Considerations:

- Disconnect all PLCs, VFDs, soft starters, and electronic devices before testing [29] [32]
- Remove fuses or disconnect power supplies to sensitive components [29] [32]
- Test voltage typically limited to 500V DC for control panels [29] [32]

Test Points: [29] [32]

- Line to neutral (with all MCBs/breakers ON) [29]
- Line to earth (with all MCBs/breakers ON) [29]
- Neutral to earth [29]
- Individual circuit testing as needed [29]

Procedure: [29] [32]

- 1. Isolate panel from all power sources [29]
- 2. Disconnect or protect sensitive electronic components $[\underline{^{29}}]$ $[\underline{^{32}}]$
- 3. Verify proper circuit isolation $^{\left[\underline{29}\right]}$
- 4. Test main bus insulation resistance [29]
- 5. Test individual circuits if required $^{\left[\underline{29}\right]}$

- 6. Minimum acceptable: Typically 1 M Ω for LV control panels [29] [32]
- 7. Document all results and restore connections [29] [32]

Generators

Generator testing is similar to motor testing but with additional considerations $[\underline{26}]$ $[\underline{30}]$.

Test Voltage Selection:

- Small generators (<1000V): 500V to 1000V DC
- Medium generators (1kV to 15kV): 1000V to 5000V DC
- Large generators (>15kV): 5000V to 10000V DC

Test Points:

- Stator winding to ground (rotor grounded)
- Rotor winding to ground (stator grounded)
- Stator to rotor
- Exciter winding to ground

Special Considerations:

- 301 PI testing strongly recommended for generator stator windings [30]
- Step voltage testing useful for comprehensive assessment [30]
- Temperature correction critical generators often tested hot [6] [30]
- Consult IEEE 43 and manufacturer guidelines [30]

Documentation and Record Keeping

Proper documentation is essential for effective maintenance programs, trending analysis, and regulatory compliance [2] [24] [22] [13] [20].

Required Documentation Elements

Test Report Should Include: [24] [22] [13]

1. Equipment Identification:

- Equipment name, type, and identification number
- Location or installation point
- Manufacturer, model, and serial number
- Nameplate ratings (voltage, current, power, etc.)

2. Test Information:

- Date and time of test
- Test type (acceptance, maintenance, troubleshooting)

- Test voltage applied
- Test duration for each measurement

3. Environmental Conditions:

- Ambient temperature
- Equipment/winding temperature
- Humidity level (if measured)
- Weather conditions (if outdoor testing)

4. Test Results:

- Insulation resistance values for all test points
- Time-stamped readings (15 sec, 60 sec, 600 sec as applicable)
- Calculated PI and DAR values
- Temperature-corrected values

5. Test Equipment:

- Uru.com Megger manufacturer, model, and serial number
- Calibration due date
- Test lead identification

6. Personnel:

- Name and signature of tester
- Name of witness (if applicable)
- Supervisor approval signature

7. Observations:

- Any unusual conditions observed
- Equipment condition notes
- Deviations from standard procedure
- Recommendations for follow-up actions

8. Acceptance Criteria:

- Minimum acceptable values
- Pass/fail determination
- Comparison with previous test results

Data Management and Trending

Trending Analysis: [2] [3] [41] [22] [20]

- 1. Maintain historical database of all IR test results
- 2. Graph IR values over time for each equipment item
- 3. Identify gradual deterioration trends

- 4. Flag sudden changes for investigation
- 5. Use trends to predict maintenance needs
- 6. Establish equipment-specific baseline values

Recommended Test Frequency: [3] [45] [46]

Equipment Type	Routine Maintenance Testing
Critical motors/generators	Annually or semi-annually
Non-critical motors	Every 2-3 years
Power transformers	Annually
Distribution transformers	Every 2-3 years
HV cables	Every 3-5 years
LV cables	Every 5 years or as needed
Switchgear	Annually
Emergency generators	Semi-annually or after use

More frequent testing may be required for:

- Equipment in harsh environments (high moisture, temperature, contamination)
- Critical process equipment
- Equipment with history of problems
- Regulatory requirements for specific industries

Record Retention:

- · Maintain test records for life of equipment
- Keep records readily accessible for trending and audits
- Digital backup recommended
- Include records in equipment history files

Reporting and Communication

Immediate Reporting Required For:

- 1. IR values below minimum acceptable limits
- 2. Significant decrease from previous readings (>30%)
- 3. Equipment that fails acceptance criteria
- 4. Safety concerns identified during testing

Test Report Distribution:

- 1. Maintenance department files
- 2. Operations management

- 3. Engineering department
- 4. Regulatory compliance files (as required)
- 5. Equipment manufacturer (for warranty issues)

Standards and Codes

Megger testing procedures should comply with applicable international and national standards $^{[4]}$ $^{[13]}$ $^{[6]}$ $^{[30]}$

Key Standards

IEEE Standards:

- **IEEE 43-2013**: IEEE Recommended Practice for Testing Insulation Resistance of Rotating Machinery [6] [30]
- IEEE 62.2: Guide for Diagnostic Field Testing of Electric Power Apparatus Electrical Machinery
- IEEE C37: Standards for switchgear and circuit breakers

IEC Standards:

- IEC 60364-6: Low-voltage electrical installations Part 6: Verification [4] [25]
- **IEC 60076:** Power transformers testing standards
- IEC 60085: Thermal evaluation and classification of electrical insulation
- **IEC 62271-1**: High-voltage switchgear and control gear [27]

NFPA Standards:

- NFPA 70: National Electrical Code (NEC) [13]
- NFPA 70B: Recommended Practice for Electrical Equipment Maintenance [13]

NETA Standards:

- ANSI/NETA ATS: Standard for Acceptance Testing Specifications [13]
- ANSI/NETA MTS: Standard for Maintenance Testing Specifications [45]

Other Standards:

- ISO 10133: Small craft electrical installations
- IACS: International Association of Classification Societies requirements for marine applications
- OSHA: Occupational Safety and Health Administration electrical safety requirements

Compliance Considerations

- 1. Identify applicable standards for your industry and jurisdiction
- 2. Follow manufacturer testing recommendations
- 3. Meet insurance company requirements
- 4. Comply with local electrical codes

5. Maintain documentation to demonstrate compliance

Common Mistakes to Avoid

Learning from common errors improves testing accuracy and safety $^{[\underline{20}]}$ $^{[\underline{36}]}$.

Top 10 Megger Test Mistakes

1. Skipping Pre-Test Inspections: [20]

- · Always conduct visual inspection before testing
- Verify equipment condition and test setup
- Check megger calibration and functionality

2. Testing Energized Equipment: [20]

- Never test equipment that is not fully de-energized
- Verify zero voltage before connecting megger
- Apply proper LOTO procedures

3. Not Disconnecting Equipment: [20]

- Failure to disconnect from circuits causes inaccurate readings
- · Can damage connected equipment
- Ensure complete isolation before testing

4. Using Incorrect Test Voltage: [20] [36]

- Too high: Can damage insulation
- Too low: May not detect all faults
- Always select appropriate voltage for equipment rating

5. Insufficient Test Duration: [20]

- Rushing through tests yields unreliable results
- Allow minimum 60 seconds for readings to stabilize
- Ensure adequate time for PI/DAR measurements

6. Ignoring Temperature Effects: [20] [36]

- Temperature significantly impacts IR readings
- Always record temperature during testing
- Apply correction factors for trending analysis
- Temperature changes can cause 2× change in IR per 10°C

7. Improper Test Lead Connections: [20]

Loose or faulty connections cause erratic readings

- Ensure secure, clean connections
- · Use properly rated test leads

8. Ignoring Safety Precautions: [20]

- Never touch test leads during testing (HIGH VOLTAGE)
- · Always discharge equipment after testing
- Use appropriate PPE

9. Not Recording Results Properly: [20]

- Document all test data immediately
- · Record environmental conditions
- Include equipment identification details
- · Sign and date all records

10. Neglecting Trend Analysis: [20]

- Single test has limited value
- · Compare with historical data
- · Track changes over time
- · Identify deterioration patterns early

Additional Common Errors

Testing Sensitive Electronics:

- · Disconnect PLCs, VFDs, electronics before testing
- Can cause permanent damage to solid-state components

UIII. COM

Not Discharging After Testing:

- Equipment retains charge after high-voltage testing
- Always discharge for minimum 4× test duration
- · Verify zero voltage before handling

Misinterpreting Results:

- Understand difference between absolute values and trends
- Apply proper acceptance criteria for equipment type
- Consider all factors (moisture, temperature, contamination)

Inadequate Personnel Training:

- Only qualified personnel should perform megger testing
- Ensure understanding of procedures and hazards
- Provide comprehensive training before independent testing

Conclusion

Megger testing (insulation resistance testing) is a fundamental and essential procedure for maintaining electrical system safety, reliability, and performance. Regular testing of cables, transformers, motors, generators, switchgear, and other electrical equipment enables early detection of insulation degradation, prevents catastrophic failures, and ensures compliance with safety standards.

Key Takeaways:

- 1. **Safety First:** Always de-energize, discharge, isolate, and lock out equipment before testing. Never touch test leads during testing, and always discharge equipment thoroughly after testing.
- 2. **Proper Test Voltage:** Select appropriate test voltage based on equipment rating typically 500V to 1000V for low-voltage equipment, 2.5kV to 5kV for medium-voltage, and up to 15kV for high-voltage equipment.
- 3. **Interpretation:** Understand minimum acceptable values for different equipment types. More importantly, track trends over time rather than relying solely on single-point readings.
- 4. **Temperature Correction:** Always apply temperature correction factors when comparing readings taken at different temperatures or when trending over time.
- 5. **Advanced Diagnostics:** Utilize PI and DAR tests for deeper insights into insulation condition, particularly for rotating machinery and transformers.
- 6. **Documentation:** Maintain comprehensive records of all test results, environmental conditions, and observations for effective trending and compliance.
- 7. **Standards Compliance:** Follow applicable IEEE, IEC, NFPA, and other relevant standards for your specific applications and jurisdiction.
- 8. **Training:** Ensure all personnel performing megger testing are properly trained and qualified in both procedures and safety requirements.
- 9. **Regular Testing:** Establish and follow a routine testing schedule based on equipment criticality, operating environment, and manufacturer recommendations.
- 10. **Professional Analysis:** When in doubt, consult with experienced electrical engineers or testing professionals for interpretation of results and recommended actions.

By following the procedures outlined in this document and maintaining a disciplined approach to insulation resistance testing, organizations can significantly improve electrical system reliability, reduce unplanned downtime, enhance personnel safety, and achieve substantial cost savings through effective preventive maintenance programs.

References

This document is based on comprehensive research from authoritative sources including:

- IEEE standards (IEEE 43-2000/2013)
- IEC standards (IEC 60364-6, IEC 62271)
- Manufacturer technical documentation (Megger, Fluke, Hioki)
- Industry best practices and guidelines

- Technical publications and research papers
- Field testing procedures from utilities and industrial facilities

All procedures should be adapted to specific equipment, local regulations, and organizational safety requirements. Always consult equipment manufacturer documentation and applicable standards for your specific application.

your specific application.

[47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72] [73] [74] [75] [76] [77] [78] [79]

- 1. https://testbook.com/electrical-engineering/megger
- 2. https://carelabz.com/megger-test-performed/
- 3. https://bartec.com/company/magazine/how-to-perform-an-insulation-resistance-test-meg-test
- 4. https://www.hioki.com/in-en/learning/usage/insulation-testers 2.html
- 5. https://www.hioki.com/in-en/support/fag/detail/id n1252407
- 6. https://roshdsanatniroo.com/pdf/IEEE Std. 43-2000.pdf
- 7. https://www.sisco.com/what-are-the-types-of-insulation-resistance-testers
- 8. https://www.fluke.com/en/products/electrical-testing/insulation-testers
- 9. https://automationforum.co/how-to-do-megger-test-insulation-resistance-for-transformer/
- 10. https://www.marinesite.info/2013/09/insulation-resistance-test-or-megger.html
- 11. https://vitrek.com/the-basics-of-insulation-resistance-testing-and-why-its-so-important/
- 12. https://electrominst.com/test-summaries/insulation-resistance-megohm-da-and-pi/
- 13. https://umaec.umich.edu/desguide/tech/26/DG260800.pdf
- 14. https://www.linkedin.com/pulse/insulation-resistance-test-procedure-protecting-your-cables-jack-niu-uz8ac
- 15. https://electricaltopic.com/Cable-test-with-megger.html
- 16. https://www.metravi.com/product/dit-930f-digital-insulation-resistance-meter-15kv-megohmmeter/
- 17. https://www.pce-instruments.com/india/measuring-instruments/test-meters/insulation-tester-insulation-meter-kat-40065.htm
- 18. https://in.element14.com/c/test-measurement/electrical-installation-electrical-test-equipment?brand=megger
- 19. http://electriciantraining.tpub.com/14175/css/Megger-Safety-Precautions-51.htm
- 20. https://www.malcots.ae/top-10-megger-test-mistakes-to-avoid/
- 21. https://forumelectrical.com/step-by-step-procedure-megger-testing-for-transformer-insulation-resistance/
- 22. https://www.scribd.com/document/648390740/SOP-Megger-Testing-20220224
- 23. https://www.linkedin.com/pulse/how-conduct-insulation-resistance-testing-substations-prasun-barua-9znif
- 24. https://www.scribd.com/document/708871321/Method-20statement-20of-20Megger-20testing
- 25. https://uk.rs-online.com/web/content/discovery/ideas-and-advice/insulation-resistance-testing
- 26. https://www.youtube.com/watch?v=gn6QVASPvaU
- 27. https://www.youtube.com/watch?v=TtuK 3pHyZs
- 28. https://forumelectrical.com/busbar-testing-procedure/
- 29. https://bensonspanels.co.uk/news-articles/how-we-test-our-control-panels

- 30. https://www.plantservices.com/home/article/11348117/motors-and-drives-testing-the-insulation-resistance-of-rot-ating-machinery-8212-highlights-of-ieee-standard-43-2000-plant-services
- 31. https://www.nrc.gov/docs/ML0824/ML082420144.pdf
- 32. https://www.scribd.com/document/772033007/Control-Panel-Inspection-Testing-Procedure
- 33. https://media.megger.com/mediacontainer/medialibraries/megger/technical-documents/academic papers/individual-temperature-correction-for-insulation-resistance-measurements.pdf
- $34. \ \underline{https://easa.com/resources/resource-library/whats-new-in-the-ieee-43-insulation-resistance-testing-standard-1}$
- 35. https://www.datsan.com.tr/en/corporate/downloads/technical-library-transformer/115-insulation-resistance-megger-correction-table-according-temperature.html
- 36. https://www.youtube.com/watch?v=KT10pwkqSxs
- 37. https://instrumentationtools.com/polarization-index-test-and-da-test/
- 38. https://electrominst.com/test-technology/insulation-resistance/
- 39. https://protecequip.com/blog/types-of-megger-test-equipment/
- 40. https://ijisrt.com/assets/upload/files/IJISRT22DEC1720 (1).pdf
- 41. https://control.com/technical-articles/how-do-you-megger-a-motor-understanding-motor-insulation-resistance/
- 42. https://www.scribd.com/doc/55797611/Megger-Test-Procedure
- 43. https://www.tunasdielektrika.com/v2/Pdfs/megger/application_note/TESTING-OF-COMPLICATED BUS BAR-PROTECTION USING SMART TESTING METHODOLOGY.pdf
- 44. https://www.artec-ingenieria.com/pdf/Guias_Tecnicas_Megger/Ingles/CB_Testing_Guide_AG_en_V02.pdf
- 45. https://www.scribd.com/document/45381173/Frequency-of-Maintenance-Testing
- 46. https://www.megger-service-excellence.com/Custom/Data/ckEditorFiles/Middle_East_/Technical_Service_Catalog.pdf
- 47. https://www.mecoinst.com/meco-products/insulation-testers
- 48. https://www.instrumart.com/assets/Megger-Guide-to-Insulation-Testing.pdf
- 49. https://www.metravi.com/product/dit-950-high-precision-insulation-resistance-tester/
- 50. https://www.youtube.com/watch?v=1Xcr7al xIY
- 51. https://www.youtube.com/watch?v=kUJ8NW5YPLc
- 52. https://www.youtube.com/watch?v=KRI 9BpB660
- 53. https://www.elprocus.com/megger-test-for-cable-and-transformer/
- 54. https://www.youtube.com/watch?v=1flqvFvAmh0
- 55. https://www.newark.com/pdfs/techarticles/megger/InsulationTesterSafety.pdf
- 56. https://www.scribd.com/document/290590613/Megger-Insulation-Test-Values
- 57. https://krmyacht.com/blog/megger-test/
- 58. https://elion.co.in/the-ultimate-guide-to-megger-testing-protecting-your-electrical-systems/
- 59. https://wiringuru.com/dielectric-absorption-index-and-polarization-index-test/
- 60. https://e-hazard.com/is-electric-insulation-testing-hazardous-part-2/
- 61. https://media.megger.com/mediacontainer/medialibraries/meggerse/images/nyheter/2021/4things-to-know-about-testing-above-1kv final.pdf
- 62. https://www.facebook.com/100072324437820/posts/ir-testing-ieee-43-2013in-insulation-resistance-testing-whe-n-voltage-applied-the/492541803166630/

- 63. https://www.bsbedge.com/standard/ieee-recommended-practice-for-testing-insulation-resistance-of-electric-mac hinery/IEEE43
- 64. https://www.eng-tips.com/threads/pm-meggering-of-motors.410817/
- 65. https://www.scribd.com/document/369239112/Insulation-Test
- 66. https://www.scribd.com/document/506881733/IEEE-Std-43-1974-A
- 67. https://www.instrumart.com/assets/Megger-Insulation-Testing-Above-1kV-Brochure.pdf
- 68. https://www.youtube.com/watch?v=wdYEiirkCws
- 69. https://ieeexplore.ieee.org/iel7/7865873/7865874/07865875.pdf
- 70. https://dadaoenergy.com/blog/how-to-use-a-megger-meter/
- 71. https://www.youtube.com/watch?v=l0w5ZAAV4OY
- 72. https://www.scribd.com/document/327837689/Procedure-Megger-Test
- 73. https://www.youtube.com/watch?v=Zbw o0P9fwg
- 74. https://www.elprocus.com/megger-construction-and-its-working-principle/
- 75. https://www.benderinc.com/know-how/technology/ungrounded-system/insulation-resistance-testing-measuringadl .s.html monitoring/
- 76. https://www.tequipment.net/megger/safety-testing-surge-testing/
- 77. https://www.youtube.com/watch?v=OTjWOf9TRAc
- 78. https://dir.indiamart.com/impcat/insulation-resistance-testers.html
- 79. https://www.youtube.com/watch?v=Y W055gtcrA