CONDUCTOR CONTINUITY TEST - QUICK REFERENCE GUIDE

For Transmission Line Commissioning and Maintenance

TEST OBJECTIVE

Verify that each conductor of the overhead line is properly connected and continuous from sending end to receiving end with correct phase identification.

PRE-TEST REQUIREMENTS

- ✓ Transmission line must be de-energized
 ✓ Insulation test must be compared. ✓ Insulation test must be completed first (confirm no short circuits)
- ✓ All safety procedures and lockout/tagout in place
- ✓ Two-person team with clear communication
- ✓ Test equipment calibrated and in good condition
- ✓ Weather conditions suitable (avoid rain/lightning)

EQUIPMENT NEEDED

- 5kV or 10kV Insulation Tester (Megger)
- High-voltage test leads
- Ground clamps
- Multimeter with continuity function
- Two-way communication device
- Safety equipment (PPE, arc-rated clothing)
- Thermometer (to document ambient temperature)
- Test recording sheet

BASIC CONTINUITY TEST - 3 SIMPLE STEPS

STEP 1: R-PHASE TEST

Sending End: Close R-Phase ground switch, Open Y & B Phase ground switches

Receiving End: Measure IR between R-Phase and Ground

Expected Result: Zero or Low ($< 0.1 \Omega$)

STEP 2: Y-PHASE TEST

Sending End: Close Y-Phase ground switch, Open R & B Phase ground switches

Receiving End: Measure IR between Y-Phase and Ground

Expected Result: Zero or Low ($< 0.1 \Omega$)

STEP 3: B-PHASE TEST

Sending End: Close B-Phase ground switch, Open R & Y Phase ground switches

Receiving End: Measure IR between B-Rhase and Ground

Expected Result: Zero or Low (< 0.1 Q)

PHASE MARKING TEST - VERIFY CORRECT PHASE IDENTIFICATION

TEST COMBINATION 1: R-Y PHASES

Sending End: Connect R & Y phases together, Open B phase

Receiving End: Measure IR between R-Y

Expected Result: Zero/Low (confirms connection)

TEST COMBINATION 2: R-B PHASES

Sending End: Connect R & B phases together, Open Y phase

Receiving End: Measure IR between R-B

Expected Result: Zero/Low (confirms connection)

TEST COMBINATION 3: Y-B PHASES

Sending End: Connect Y & B phases together, Open R phase

Receiving End: Measure IR between Y-B

Expected Result: Zero/Low (confirms connection)

RESISTANCE INTERPRETATION GUIDE

Resistance	Condition	Action
0 - 0.01 Ω	EXCELLENT - Continuous	✓ Proceed to commissioning
0.01 - 0.1 Ω	GOOD - Acceptable	✓ Proceed to commissioning
0.1 - 1 Ω	ACCEPTABLE - Monitor	⚠ Document & monitor
1 - 10 Ω	POOR - Investigate	Stop testing, investigate
> 10 Ω	BROKEN - Severe damage	X Stop testing, repair required

TYPICAL RESULTS FOR DIFFERENT LINE LENGTHS

Line Length	Typical Resistance	Condition
10 km	0.001 Ω	Excellent
25 km	0.0025 Ω	Excellent
50 km	0.005 Ω	Excellent
100 km	0.01 Ω	Good
150 km	0.015 Ω	Good

Note: Actual values depend on conductor size, material, temperature, and condition

SAFETY CHECKLIST

Before Starting:

- [] Line is de-energized and properly isolated
- [] Voltage confirmed absent using non-contact detector
- [] All personnel briefed on test procedure
- [] Safety equipment distributed and in place
- [] Two-way communication established
- [] Test equipment checked and calibrated
- [] Weather conditions are suitable

During Testing:

- [] Never touch conductor terminals directly
- [] Keep proper distance from live circuit components
- [] Always use high-voltage rated test leads
- [] Monitor all test equipment continuously
- [] Maintain clear communication with remote end
- [] Stop immediately if any hazardous condition arises

After Testing:

- [] Fully discharge line capacitance
- [] Remove all test equipment safely
- [] Document all results clearly
- [] Store equipment properly
- [] Debrief team on findings

COMMON PROBLEMS & SOLUTIONS

Problem	Possible Cause	Solution
High resistance reading	Broken conductor, corrosion, loose connection	Stop test, inspect physically, repair if needed
Intermittent readings	Poor contact at ground clamp	Clean contacts, ensure proper connection

Problem	Possible Cause	Solution
Temperature variation	Ambient temperature changing	Document temperature, allow stabilization
Phase confusion	Incorrect marking or cross- connection	Verify physical phase positions, correct marking
Shortened line reading	Phase-to-phase leak through insulation	Return to insulation test, identify fault location

TEST DOCUMENTATION REQUIREMENTS

Record the following in your test report:

- Date and time of test
- Ambient temperature and weather conditions
- Equipment used (model numbers and calibration date)
- Insulation tester settings used (5kV or 10kV)
- All resistance measurements for each phase
- Phase marking verification results
- Any anomalies or concerns noted
- Pass/Fail status for each test
- Technician names and signatures
- Photographs of test setup (optional but recommended)

PASS/FAIL CRITERIA

PASS REQUIREMENTS:

- ✓ All three phases show zero or low resistance (<0.1 Ω)
- ✓ No phase-to-phase leakage detected
- ✓ Phase marking matches actual conductor positions
- ✓ All measurements consistent and repeatable
- ✓ No visible damage to conductors or connections

FAIL REASONS:

- X Any phase showing resistance > 10Ω
- X Phase-to-phase short circuit detected
- X Phase marking does not match connections
- X Visible damage to conductors or joints
- X Unable to verify phase continuity

QUICK REFERENCE - VOLTAGE LEVELS

For 132 kV Lines: Use 5kV test voltage

For 220 kV Lines: Use 5-10kV test voltage For 400 kV Lines: Use 10kV test voltage

For Double Circuits: Test each circuit separately

BEFORE ENERGIZING THE LINE Confirm:

- Conductor continuity test PASSED
- Phase marking verification PASSED
- Insulation resistance test PASSED
- ✓ Earth resistance within limits
- ✓ Visual inspection completed
- All test documentation filed
- No safety concerns identified
- ✓ All stakeholders informed

IMPORTANT NOTES

- 1. Temperature Effects: Conductor resistance increases ~4% per 10°C. Record ambient temperature.
- 2. Long Lines: For lines > 50 km, use 10kV test voltage for better accuracy.

- 3. Corrosion: Oxidized or corroded connections will show elevated resistance.
- 4. Phase Identification: Incorrect phase marking can cause equipment damage during operation.
- 5. Maintenance Testing: Repeat continuity tests every 3-5 years during routine maintenance.
- 6. **Double Circuits:** Test each circuit completely before testing the next one.

REFERENCE STANDARDS

- IS 5613: Overhead Alternating Current Power Lines
- CEA Guidelines for Transmission Line Testing
- IEEE Standards for Power System Testing
- IEC 60060: High Voltage Testing Techniques

For more detailed information, visits

• Main Blog: https://w--